FSLNet Workflow

Authors
Date
Jun 20, 2023 05:08 AM
Field
Neuroimaging
Main Tags
Tags
FSL
resting-state fMRI
Additional Tags
FSLNet 是基于Matlab开发的网络分析工具箱,默认采用的input是fsl melodic 的组ICA输出结果,基于官方教程总结下面的workflow。
notion image

rfMRI FSLnets Workflow

Input Preparation

Define nodes

(spatial maps)
melodic -i input_files.txt -o groupICA100 \ --tr=0.72 --nobet -a concat \ --bgimage=$FSLDIR/data/standard/MNI152_T1_2mm_brain.nii.gz \ -m $FSLDIR/data/standard/MNI152_T1_2mm_brain_mask.nii.gz \ --report --Oall -d 30

Extract timeseries from nodes

dual_regression groupICA100/melodic_IC 1 -1 0 groupICA100.dr cat input_files.txt

create images of nodes

slices_summary groupICA100/melodic_IC 4 $FSLDIR/data/standard/MNI152_T1_2mm groupICA100.sum -1

Matlab setup

Package Requirements

  • Offical toolbox
    • Statistics
      • is a must
    • Bioinformatics
      • MATLAB's SVM
    • Signal Processing
      • see timeseries
  • LIBSVM
    • use the LIBSVM implementation of SVM for netmat-based classification
  • L1precision
    • to estimate L1-norm regularised partial correlation matrices
  • Pairwise causal
    • look at causal directionalities

FSLNets

network_analysis.m

Official template is in FSLNets folder, name is 'nets_examples.m'

Script setup

add package paths

load group map/ dual regression output directory

check mean timeseries spectra

Node Cleaning

set up node list

  • ts.DD
    • good node
  • ts.UNK
    • optional
    • for unknown components

regress the bad node out

check cleaned data and visualization

Calculating netmats for each subject

netmats0= nets_netmats(ts,0,'cov');    % covariance (with variances on diagonal) netmats0a= nets_netmats(ts,0,'amp');    % amplitudes only - no correlations (just the diagonal) netmats1= nets_netmats(ts,1,'corr');    % full correlation (normalised covariances) netmats2= nets_netmats(ts,1,'icov');    % partial correlation netmats3= nets_netmats(ts,1,'icov',10);  % L1-regularised partial, with lambda=10 netmats5= nets_netmats(ts,1,'ridgep');   % Ridge Regression partial, with rho=0.1 netmats11= nets_netmats(ts,0,'pwling');   % Hyvarinen's pairwise causality measure

Group-average netmat summaries

group mean

  • output:[t-test Z value, Mean value]

group average network hierachy

Visualization

interactive web-based display

Cross-subject comparison

Calculating significant group difference

  • two-ample t-test
  • output
    • corrected p
    • uncorrected p

Displaying significant group differences

displaying boxplot

Multivariate cross-suvject analysis

  • ML-based classification
  • overall pattern change between two groups